Asymptotics of k-nearest Neighbor Riesz Energies

نویسندگان

چکیده

We obtain new asymptotic results about systems of N particles governed by Riesz interactions involving k-nearest neighbors each particle as $$N\rightarrow \infty $$ . These include a generalization to weighted potentials with external field. Such offer an appealing alternative other approaches for reducing the computational complexity N-body interaction. find first-order term large asymptotics and characterize limiting distribution minimizers. also \Gamma -convergence such interactions, describe minimizers on 1-dimensional flat torus in absence field, all N.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph

We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.

متن کامل

Unsupervised K-Nearest Neighbor Regression

In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...

متن کامل

Superlinear Parallelization of k-Nearest Neighbor Retrieval

With m processors available, the k-nearest neighbor classifier can be straightforwardly parallelized with a linear speed increase of factor m. In this paper we introduce two methods that in principle are able to achieve this aim. The first method splits the test set in m parts, while the other distributes the training set over m sub-classifiers, and merges their m nearest neighbor sets with eac...

متن کامل

Neighbor-weighted K-nearest neighbor for unbalanced text corpus

Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2023

ISSN: ['0176-4276', '1432-0940']

DOI: https://doi.org/10.1007/s00365-023-09641-5